Kinetics of the two-dimensional long-range Ising model at low temperatures

نویسندگان

چکیده

We study the low-temperature domain growth kinetics of two-dimensional Ising model with long-range coupling: $J(r) \sim r^{-(d+\sigma)}$, where $d=2$ is dimensionality. According to Bray-Rutenberg predictions, exponent $\sigma$ controls algebraic in time characteristic size $L(t)$, $L(t) t^{1/z}$, $z=1+\sigma$ for $\sigma <1$ and $z=2$ >1$. These results hold quenches a non-zero temperature $T>0$ below critical $T_c$. show that, case $T=0$, due interactions, interfaces experience drift which makes dynamics system peculiar. More precisely we find that this takes value $z=4/3$, independent $\sigma$, showing it universal quantity. support our claim by means extended Monte Carlo simulations analytical arguments simplified models.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two dimensional Ising model with long-range competing interactions

The two-dimensional Ising model with competing short range ferromagnetic interactions and long range antiferro-magnetic interactions is perhaps the most simple one containing the minimal microscopic ingredients necessary for an appropriate description of the macroscopic properties of ultrathin films and quasi−two−dimensional magnetic materials. Despite such relative simplicity, the frustration ...

متن کامل

Long-range dependence of the two-dimensional Ising model at critical temperature ∗†‡

The paper gives probabilists who are unfamiliar with the Ising model a coherent, integrated explanation of why the Ising model displays long-range dependence at critical temperature. The Ising model in two dimensions involves spins σj,k = ±1 located at every node (j, k) of the lattice, with nearest neighbor interactions. We shall focus on the covariances Eσ0,0σ0,N and Eσ0,0σN,N between the spin...

متن کامل

Metastability of the Three Dimensional Ising Model on a Torus at Very Low Temperatures

We study the metastability of the stochastic three dimensional Ising model on a finite torus under a small positive magnetic field at very low temperatures.

متن کامل

One-dimensional Ising model with long-range and random short-range interactions

The one-dimensional Ising model in an external magnetic field with uniform long-range interactions and random short-range interactions satisfying bimodal annealed distributions is studied. This generalizes the random model discussed by Paladin et al. (J. Phys. I France 4, 1994, p. 1597). Exact results are obtained for the thermodynamic functions at arbitrary temperatures, and special attention ...

متن کامل

Ising Exponents in the Two-dimensional Site-diluted Ising Model

We study the site-diluted Ising model in two dimensions with Monte Carlo simulations. Using nite-size scaling techniques we compute the critical exponents observing deviations from the pure Ising ones. The diierences can be explained as the eeects of logarithmic corrections, without requiring to change the Universality Class.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2021

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physreve.103.012108